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ABSTRACT

We consider an M/M/1 queue which is controlled by dynamically
setting the customer's entrance fee to either b1 or b2>b] and
thereby setting the customer arrival rate to either A1 or x2<x1,
respectively. With E[F] the expected fee collected per unit of
time and PN the steady state probability that the system contains
more than N customers, we consider two criteria: (i) for some
number r, minimize Py subject to E[F]>r, and (ii) for some number
e, maximize E[F] subject to PNse. Under each criterion we
consider two cases: (a) the admissible policies are single
critical number switching policies and (b) a cost y20 is
incurred whenever the server switches between b] and b2, the
admissible policies allow for hysteresis to appear in the

arrival process. Optimal policies are computed for each criterion

and each case.
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QjOne can observe, in the literature on queueing theory, a
growing interest in the control of the arrival process. For
most of the published models, the aim is to maximize the
difference between fees collected and costs: it is explicitly
assumed that the fees and costs can be measured and are expressed
in the same units.) They are then merged into a single objective

function (Naor [7], Yechiali [12,13], Edelson & Hildebrand [1],

Teghem [10] or Low [5,6], among others.)

In fact, it is recognized that such a merging cannot always
be done. Just to give one example, we observe that the fee
charged to customers may be an arbitrary notion (as noted by
Nielsen [8]: "the pricing of computer services is not dependent
upon charging users real money"); in such a case, it might be
difficult to express costs in the same unit as the fee. We
assume in this paper that the reason for controlling the arrival
process is to achieve some balance between acceptance and
rejection of customers; while letting customers in increases
the fee collected, an excess of customers should be avoided.

We considerthe two objectives of maximizing the fee collected
and minimizing queue congestion as distinct. If it is not
possible to optimize these simultaneously, then the problem will
be to maintain one of them at a reasonable level and, under that
constraint, to optimize the other. «—

In anothar paper [4], we considéred similar models where the
two objectives are merged into one single function. The analysis
and results in [4] are both quantitatively and qualitatively

different from those we present here.




Specifically, we assume that the server may dynamically

set the entrance fee to either b1 or b2>b]; the arrivals form a

Poisson process with parameter A] or A2<A1 respectively.

The service times are independent, identically distributed,

exponential (y) random variables, independent of the arrival
process.

The waiting room is infinite, but the total number of
customers in the system should preferably not exceed some value
N, called the critical level.

3 With E[F], the expected fee collected per unit of time, in
steady state and PN the steady state probability that the system
contains more than N customers, we consider two criteria:

(i) for some number r minimize PN’ subject to E[F]>r,
and

(ii) for some number ¢ maximize E[F], subject to PNse.

Under each criterion, we consider two cases:

(a) the admissible policies are single critical number
switching policies, they are characterized by a number M: if
there are fewer than M customers in the system, the entrance fee
is b}, otherwise it is bys

(b) a cost y20 is incurred whenever the server switches
between b] and b2 and the admissible policies allow for hysteresis
to appear in the arrival process. These policies are characterized
by two numbers, m and M (msM-1): 1if the fee is b.I and the

number of customers increases from (M-1) to M, the fee becomes bys

if the fee is bz and the number of customers decreases from (m+1)

to m, the fee becomes b]'




Hysteresis in the service process has been considered by
several authors (for instance, Yadin & Naor [11] or Teghem [10]).
To the best of our knowledge, only Scott [9] has considered
hysteresis in the arrival process; we comment more on this paper
in Section 4.

Optimal policies are computed for each criterion and each
case.

The policies we determine are not necessarily optimal with
respect to larger sets of admissible control policies. For
instance, we mention in Sections 6 and 7 that even with y=0,
some policy with hysteresis may be strictly superior to every
single critical number policy. Moreover, one can determine
randomized stationary policies which are strictly superior to
any policy in the classes we have considered. Nevertheless,
these policies are easily implemented and can be efficient, as
we show by examples in Section 8.

The optimal single critical number policy is determined
explicitly for the first criterion; for the second criterion, the
optimal policy is determined explicitly for large e, through an
equation with a unique solution for small ¢ (this is made precise
in Section 3). To find the optimal policy with hysteresis, we
use properties of E[F] and PN to determine a finite number of
pairs (m,M) among which the best is to be found numerically.

The computations involved are straightforward. We shall not
present detailed proofs; some of them are quite lengthy and are

presented in [3].




To conclude the introduction, we comment on our measure of

queue congestion, the probability PN of having more than N

customers in the system. 1In some cases, a more appropriate
measure might be the expected queue length or the mean cost of
waiting if customers were able to measure such a cost.

For the first criterion, the optimal single critical number
policy would be the same; it appears in Section 2 that the
optimal value for M does not depend on N. In the other cases,
we suspect that the analysis would follow the same lines although

the details are of coursé different.




1. Control With a Single Critical Number

In this case, the model is simple to analyze and most of the
results in Sections 1 to 3 are intuitively obvious. As stated in

the introduction, we assume b.l<b2 and A]>A2.

A
Moreover, if pi=;i, i=1,2, we assume that p2<1, while py May

be less than or greater than 1.
It is obvious, therefore, that steady state conditions are

satisfied if M<= or M=« and p,<1.

Let
"i(M) = P[i customers in the system in steady state|M]
and
PyM) = T m (M),
j=i+l

we shall refer to the Pi‘s as the tail probabilities.
One can easily solve the system of equations for the
probabilities "i(M) (i=0,1,...) and, from there, one gets for p1#1

i + M
p; 1(1-p2)-p](p]-pz)

P.(M) = igM, (1a)
) 1-p,-07(p7-0)
-l Ll
{1=pydogon™
M i2M; (1b)
1-p5-p7(pq=05)
for p]=1, the corresponding formulas are
14(M=1-1)(T-0,)
Pyl & —rWtT=r,) it
i-M+1
S

221 7y A




Lemma 1: For all i, Pi(M) is an increasing function of M.

This property is intuitively obvious: if M increases, the
number of states for which the arrival rate is A (>A2) increases
and the probability of having more than i customers increases.
Now, let

r(M) = E[fee collected per unit of time in steady state|[M].

0f course,

r(M) = Aoby + (Aqby=2,b,) (1-Py 1 (M)). (2)
where .
p](]'p'l)
PM_](M) =

1-02~p?(p]-92)

Lemma 2: r(M) is an increasing function of M if A]b]>A2b2; it 1s
constant if x]b]=A2b2 and decreasing if A]b]<A2b2.

This results from the fact that PM_](M) is decreasing in M
for all finite value of Pq- The following result is an immediate

consequence of Lemmas 1 and 2:

Theorem 1: If A]blgxzbz, it is optimal to set M equal to O.
In fact, only if A]b]sxzbz can one reach simultaneously the
two objectives: maximize r(M) and minimize PN(M) and it is done

by choosing the fee b2 always. He'shall assume in the next two

sections that A]b]>x2b2.




4 2. Constraint on the Expected Fee

g‘ Suppose it is decided that the expected fee r(M) must be at
QJ least equal to some predetermined value r. The problem is then
*

to find M1 such that

r(M;)z2F (3)
and
3 PN(Ml)SPN(M) for all M such that r(M)zr.
Let r(»)=1im r(M), one gets easily from (1) and (2) that
M->w
1im P (M) =0 if p,<1,
| Ll 1
I pq-1
i 1
| = = p >1,
Py=Pp 1
hence
r(m) = A]b] Q]S]’
= 2b2 _p1 » + )\.Ib.l TEre < A.Ib.l p.|>].

Clearly, if M is equal to =, the expected fee over any
interval of time is x]b] times the length of that interval, even

if py>1. Therefore, if r(M==) denotes the value of r(M) when M=o

we shall consider that r(M=m)=A]b] for all Aq-

Theorem 2:

F If A]b]<r, then there is no solution;
i -
b ( )SPS 1 ]s M]'“n
2b2<r<r( ®), >0 M]=fx]];
Osr<r(=), A,=0 M]=max(N,[x]]);
r<Azb2 M]=0;

F N—

e ——— p




x]=-1og(1+y)/logp] if pi#1,
=(F‘A2b2)/((A]b]'F)(]‘Pz)) it D1=]s
y=((F‘>‘2b2)(]‘P] ))/((A]b]-F)(]'pz))

and [x] denotes the smallest integer greater than or equal to x.

The proof of this theorem is easy and can be found in [3].
Observe that if x2=0, the level M takes on a special meaning:
it is the maximum number of customers the server allows in the
system. If Xq as defined in the theorem is less than (N-1), then
the solution is not unique, since PN(M)=0 and r(M)2r for all
M=fx]1, [x;1+1,...,N. However, since the critical level has
been set to N and not a smaller value, M1 should be N since
r(N)>r(N-1)>... Therefore, if X,=0, then M1=max(N,[x1]).

If X,70, then M1 does not depend on N, therefore, if the
objective is to keep the expected fee at the level r at least,
it is not necessary to determine a critical level N: M]
minimizes the tail probabilities Pi(M) for all i>0 and minimizes
the expected queue length. To analyze M] as a function of the
different parameters, one analyzes either the explicit expression
for xq or r(M). It appears that My is, trivially, a (non
strictly) increasing function of r and a decreasing function of
all the other parameters: A], Aos W b] and b2'

One can show also that if r is a linear combination of A]b]
and AZ 29

r = wA1b]+(1-w)A2b2

for some we(0,1), then M] is finite if and only if u is greater

than the same linear combination of A] and AZ:

u>wA]+(1-w)A2.

B—
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3. Constraint on the Tail Probability

Suppose now, contrary to the preceding section, that
it is decided that the probability of having more than N customers
in the system has to be less than some given value €. The problem
is then to find M2 such that
PN(MZ)se
(4)

and
r(Mz)gr(M) for all M such that PN(M)se.

M2 is determined very easily. Two cases must be distinguished:
it PN(N)ss, it results from Lemma 1 that M, is greater than or
equal to N and is determined using equation (la); if PN(N)>e, M2<N
and equation (1b) has to be used.

Note that
s o N+1
PN(")'JLE Py(M)=min(1, o, )

and that PN(0)=92+] should be smaller than or equal to e in

order to have a solution.

Theorem 3

If e<pg+], there is no solution;

; +
pg+]5€<m1n(],p': ])’ M2=|.X2J;
min(l,p¥+])5€51’ Ma==s

where x2<N is the unique nonnegative root of the equation

(01/92)x=e(1-92-p?(p1-02))/(og+](1-91)) (5)

if by se<Py(N); (6)

and X2=109{(1-92)(p¥+]-e)/((91-02)(1-6))}/109912N
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if pN(N)se<m1n(1,p:‘”) (7)

and | x] denotes the greatest integer less than or equal to x.
Proof of this theorem can be found in [3].

In the strict sense, equation (5) may have two non negative
roots if e=pg+]: x=0 and some positive root, say x*. It can be
seen easily that in this case, x*<1 and therefore there is no
ambiguity on the value of M,: both LOJ and [x*] are equal to O.

Observe that Xp does not depend on b] or b2‘ Therefore, if
E the objective is to keep the probability PN(M) at the level ¢
. at most (eng+]), there is no need to determine precise values
for b, and b,; it suffices to check whether X b;>1,b, (it is
: more advantageous to let many customers in the system) or not, in
' the first case, theorem 3 applies, in the second, theorem 1 and
M2=O. There is no explicit form for Mz if M2<N. However, it
is very easy to determine numerically a suitable approximation
for Xy using standard methods; as M2 is integer valued, one does
not need a very high precision on this approximation and it is
found rapidly.

By analyzing PN(M) as a function of the different parameters,
one shows that, not surprisingly, M2 is a decreasing function of:

A and Ay and an increasing function of u, N and €.
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4. Control with Hysteresis

We shall examine now the second type of control, where
hysteresis is introduced in the arrival process.

Let us assume A]b]>A2b2. If A]b]sxzbz, it can be shown that
the optimal rule is to impose the fee b2 always.

Let us assume furthermore that y20 where y is the cost

incurred by the server each time there is a change of fee and
M-12m20 (8)

This last inequality means that the fee is certainly b] when the
system is empty and the only purpose of this assumption is to get
a more uniform presentation of the results.

The determination of the state probabilities and the expected
reward is not as straightforward as for the preceding type of
control. M. Scott [9] derives the probabilities when the maximum
queue size is finite.

In [3], we determine these quantities - when the maximum
queue size is infinite - by using a different technique that can

be roughly described as follows:

Let r(m,M)=E[fee collected per unit of time in steady state|(m,M)]

and Pi(m,M)=P[more than i customers in the system in steady
state|(m,M)].

Obviously, r(m,M) is equal to the expected total fee collected
during a busy cycle divided by the expected length of a busy
cycle and similarly for Pi(m,M).

To study a busy cycle, we decompose it into homogeneous
intervals of time: first, there is an idle period. When a first

customer joins the queue, there is a random walk with absorbing
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boundaries at 0 and M, during this random walk, the arrival rate
is constant and equal to A], the fee is b]. If avsorption is in
0, the busy cycle terminates; if absorption is in M, the server
suffers a loss y and a new random walk is initiated, with
absorbing boundary in m, arrival rate Ao and fee b2‘ Upon
absorption in m, there is a cost y, a new random walk of the
first type is initiated and the process repeats itself.

The detailed computation for r(m,M) is given in the appendix;
Pi(m,M) is determined in much the same way, as can be found in [3].

Eventually, one gets for Pi(m,M):

a. Osigm
P-(msM)=(]-pz)(]-p?-m)°:+]+(M'm)°T(°2'°1)(1-01)
: (]-QZ)(]'°T-m)+(M'm)o?(pg'O1)(1-01)
b. m-TgicM
fi+]

[o]
1
P1 (m,M)=-1Tz X

(1-02)2(1-p]'i)+ (M-1) pT'i'](oz-o])(1-01)(1-p2)+oT-i'1(oz-o;'m+])(1-o1

)2

(1-05) (1-6Y "™+ (M-m)o{(0=07) (1=,

c. M-1l<i

M i- -
p.lp; M+1 (]-01)2(]-92 m)
1-p

Pi(m,M)=
‘ 2 (1-pp)(T=p7 ™)+(M-m)oy(p-07) (1-p7)

and

o1 (1-01)2(27(1-0,) 4 (M=m) (by0q-byo,))
(1-02) (1-67 ™)+ (M-m)o" (0-07) (107)

r(m,M)=A]b]-A]
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5. Analysis of the Expected Fee and the Tail Probabilities

Lemma 3: For all i, Pi(m,M) is an increasing function of m and M.

This property can easily be justified in the same way as
Lemma 1. Note that there is no general relationship between
Pi(m,M) and Pi(m',M') if m<m' and M>M'.

The behavior of r(m,M) as a function of m and M is more
complex. Details can be found in [3] but we shall summarize here

the most important properties.

Lemma 4: For any given m, r(m,M) is an increasing function of M.

Lemma 5: For any given M, r(m,M) is a unimodal function of m and
we denote by My the corresponding maximizing value.

In fact, we determine quantities y](M) and Yz(") such that
if y<y](M) (the cost y is small) then mM=M-1: for that value of
M the reward is maximum when there is no hysteresis; if y>yz(M)
then mM=0: m should be as far apart from M as possible; if vy
lies between y](M) and y2(M), my is determined by finding the

unique root of some equation.
Remark : My+12My for all M21.

These properties and others give us detailed although not

complete information on r(m,M).

M Mah s O ) b Lo bt R e e i e Al ot L e s it e e o it e
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6. Constraint on the Expected Fee

The problem is to find (m1,M]) such that
r(m],Ml)zF
and Py(mysM)<Py(m,M) for all (m,M) such that r(m,M)zr.

Let @ be the set {(m,M)|M=1,2,...; m=0,1,...,M-1} of all
pairs satisfying (8) and let

ﬂ] = {(msM)l(msM)EQs r(m’M)EF}-

Obviously, (m],M1)en]. '

If 2, is empty, the problem has no solution; if Q=0, it
results from Lemma 3 that (m],M1)=(0,1), the fee should be b,
whenever there is a customer in the system; otherwise, we
proceed in two steps to determine (m],M]).

First, by using repeatedly the properties of r(m,M), we
prove that 24 has the form indicated on figure 1: the dashed
region corresponds to 2-2,3 the boundary of 2, is made up of
two parts: for increasing m, it is first non-increasing and
% second it is non-decreasing until it coincides with the line m=M-1.
We have marked by an x the "corners" in the first part of the
boundary. We denote those pairs by (m?,M?). We shall not give
here the full definition of the (m?,M?)'s, as it is very
cumbersome. Let us mention that they are ordered in such a way

X X I .
that Mi<Mi+l and my>meyg- Their most important properties are:

M?=min{M|r(mM,M)zF};

for a given m=m?,

X

r(m;‘,M)ZF iff MMy

-




. X
for a given M=Mi,

r(m,M?)<F for all m<m?.

We then use Lemma 3 to prove the following theorem:

Theorem 4

(my.Mq)ed(my,M7), i=1,...,1%},

There is no explicit expression for (ml,M]), one should
compare all (m?,M?)'s to determine it. This can easily be done
numerically. Note that I* is at most equal to fx11 (defined in
Theorem 2) and is, in general, smaller; we have thus an upper
bound on the number of pairs that will have to be determined and
compared.

To analyze the solution as a function of the parameters, one
has to resolve to computations. As an example, we have examined
how (m],M]) depends on N (see figure 2). For the single
critical number policies, we have seen that M] is independent of
N. For control with hysteresis, it appears that (m],M]) varies
in general only slightly with N, if at all; however, if r is
very close to the 1im r(m,M) and A] is much larger than AZ’ the
variations are gre:::r, as can be seen in figure 2. Those cases
do not seem typical.

One can observe that if y=0, my is not necessarily equal to
(M]-l) (Table I). In other words, even if the server suffers no
cost each time the fee is changed, it is optimal in some cases

to introduce hysteresis in the arrival process.
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L e 1.3

3
—t
~N
N
w

=

5

u=l., Ay=.9, r=.8, by=T.,
v=0, bz‘.4/A2, N=0,1,...,10

Table 1
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Constraint on the Tail Probability

I.‘ —

(mz,Mz) is defined as follows
PN(m2 ,MZ)SE
and r(mz,Mz)Zr(m,M) for all (m,M) such that PN(m,M)ge.

Let 92={(m,M)|(m,M)e9 and PN(m,M)se}. If 9, is empty, the
problem has no solution. If 92=9, it results from Lemma 4 that
M2=~ and therefore m, can take any value: the fee is b] always.
Otherwise, we use Lemma 3 to prove that 2, has the form indicated
on figure 3: the dashed region corresponds to 9-92; the boundary
of 92 forms a non-increasing line for increasing m. We have
marked by a + some of the points in a,, denoted by (m:,M:).
Again, we do not define formally those pairs in this paper. Let

+

us mention that they are ordered in such a way that M1<M;+] and

m¥>m:+]. (m;,M;) is defined as follows:

+ ;
My = max{MlPN(mM,M)se},

+
m] = mM;- H

the other pairs represent the "corners" in the boundary of 2y, to
the lTeft of (m;,M;); moreover, for a given m=m:,

Py(miM)se iff MeM3

and for a given M=M;,

Py(m,MI)se 1 mem}.

We then use the properties of r(m,M) to prove the following

theorem:
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Theorem 5:

(my,My)el(my,M3), i=1,...,17} .

To complete theorem 5, we may add that
+ ,+ + ,t
if (m1,M]+1)eﬂz, then (mz,Mz)#(m1,M]).

In other words, (mz,Mz) lies on the boundary of o, and (mT,M¥)
cannot be optimal if it lies inside Q. Xy (defined in Theorem 3)
provides an upper bound on the number of pairs that have to be
determined and compared, for I+5(Lx21+1).

We have analyzed numerically (mz,Mz) as a function of y and
it appears (figures 4 to 6) that M, is a (non strictly) increasing
function of y while m, is decreasing. This property is not
surprising: 1if the cost y increases, the server should wait
longer before switching to the fee b2 (M2 increases) and wait
longer before switching back to the fee b.l (the difference
(Mz-mz) increases). This shows that, to the contrary of the
single critical number policies (see end of Section 3), the
optimal solution depends on the values assigned to cost and fees.

Observe that if y=0, m, is not necessarily equal to (Mz-l)

(figures 4 and 6).
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8. Comparisons Between the Two Types of Policies

To conclude, we mention numerical comparisons between the
two types of policies when the cost y is positive: we can
determine as in Sections 1 to 3 optimal single critical number
policies.

Figures 7 to 10 present 4 examples corresponding to 2 values
for N (N=5 and N=10) and 2 values for y (y=.5 - which is small
compared to b] and b2 - and y=5 - which is large compared to b]
and bz). On each figure, curves 1 and' 2 correspond to y=.5,
curves 3 and 4 to y=5; curves 1 and 3 correspond to control with
hysteresis, curves 2 and 4 to control with a single critical
number.

Obviously, controls with a single critical number yields less
good results, since they are special cases of controls with
hysteresis. As can be seen in the figures, the difference can
be substantial. Also, it appears that the optimal control with
hysteresis is efficient, except under severe circumstances,

such as small value for N, large cost y and quite large r

(or small ¢).




Appendix

Let us denote by rm,M the expected total reward during a
busy cycle given m and M. Consider a random walk on {0,1,...,L}
with absorbing boundaries at 0 and L. Transitions are from n
to n+1 (step to the right) and n to n-1 (step to the left) if
n#0 and L. The interval of time between two steps to the right
(to the left) is negative exponential with parameter A(u).
Because of the memoryless property of the negative exponential
distribution, the interval of time between any step and a step
to the right (left) is negative exponential with parameter x(u).

Moreover, P[n+n+1]=r/(A+u) and P[n+n-1]=u/(2+u) (n#0 and L). Let

an(L,A,u)=P[absorption in O0|initial state is n]

gn(L,A,u)=E[number of steps to the right before absorption in 0
or L|initial state is n].

It is well known, see for instance [2] p. 314 that
an(Laraw)=(1-p5) 7T (1-05 ).

where p=A/u.

We show in [3] that
gp(Larau)=(1-0)"Toln-L(1-a, (L,2,0))].
If L tends to =, we get, if p<1,
an(""’A .u)=1
gp(=srsu)=no(1-p)"".

To determine rm,M’ we decompose a busy cycle as follows.
First, there is an idle period, at the end of which a customer
enters the queue and pays b1. Then a random walk begins, with

absorbing boundary at 0 and M, parameter Ay to each step to the
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right is associated a reward b]. If absorption is at 0, the
busy cycle terminates. Otherwise, a cost y is incurred and a
new random walk begins, with absorbing boundary at m, parameter
AZ’ reward b2 for each step to the right. Upon absorption at m,
a cost y is incurred and a new random walk of the first type is
initiated, etc... Thus, if rm(rM) is the total expected reward
during the remainder of the busy cycle given that the queue is
in state m(M) and if go’n(L,A,u) (resp. gL,n(L,A,u)) is the
expected number of steps to the right before absorption given
that the initial state is n and absorption is in 0 (resp. L) we
get:

P M= (Madgau)gg (M gau)+(T-a (M, 5u)) (bygy { (Muag,u)+ry-y),

rM=b29M_m(°°aX2 aU)+rm'Y,
rm=b]am(M,>\.’ sU)QODm(M9A] s“)"'(l‘am(MsA] sU))(b]gM’m(MaA] sU)"'rM'Y) .

As 9n=an90,n+(1'an)gL,n’ one gets eventually

o ][} 1 (M-m)o?(p1-oz):].. o] (109 ) [2v(1-0,)+ (M-m) (b101-by0,)]
m,

P (1=py)lleny "} (1-p,) (1-01"™)

(A.1)
Let O M be the expected length of a busy cycle. We
determine “n,M in [3] by the same technique we used to determine
"o, M We propose here another argument: “m,ﬁ is the idle
period (mean 1/A]) plus the amount of work brought by the
customers during the busy cycle. To get this amount of work, one
just replaces in (A.1) y by 0, by and b, by 1/u.
This Teads to
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[:, i (M-m)pT(o,-oz):] B
U1 (1ep,) (1-67°™)

From (A.1) and (A.2), it is easy to check that

-
r(m,M)aJld!
“m,M

o1 "1 (1-01)2(2y (1-p,)+ (M-m) (b 10, -byo ) )
(1-05) (T=07 ™)+ (M=m)p] (5 =07 ) (1-p)

=Ayby-2y
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